

Professor Endocrinology and Neurosurgery

Director Pituitary Center

Oregon Health and Science University, Portland, OR

Disclosure

- Novartis, Millendo, Strongbridge
 - PI, Research funding to OHSU
- Novartis, Strongbridge
 - Scientific consulting fee

OHSU NW Pituitary Center

"Measure what is measurable, and to make measurable what is not so"

Galileo Galileo 1564-1642

OHSU NW Pituitary Center

On the horizon for Cushing's syndrome Levoketoconazole, phase III data published

Fleseriu et al , Lancet Diabetes and Endocrinology, 2019

Significant improvements in quality of life and depression with levoketoconazole from baseline to end of maintenance

P<0.01 versus baseline; *P<0.001 versus baseline

Fleseriu M et al. Presented at AACE 2019; abstract #497

BDI-II, Beck Depression Inventory II; QoL, quality of life

On the horizon for Cushing's disease Osilodrostat , phase III data available

Osilodrostat (LCl699) Oral inhibitor of 11β-hydroxylase (responsible for catalysing final step of cortisol synthesis); also inhibits aldosterone synthesis

Fleseriu M et al. Pituitary 2016, Pivonello, Fleseriu et al, ICE 2018

Osilodrostat phase II study- 22 weeks

Potent inhibitor of 11β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2)

Osilodrostat in Cushing's disease (CD): Results from a Phase III, multicenter, double-blind, randomized withdrawal study (LINC 3)

Rosario Pivonello,¹ Maria Fleseriu,² John Newell-Price,³ Xavier Bertagna,⁴ James Findling,⁵ Akira Shimatsu,⁶ Feng Gu,⁷ Richard Auchus,⁸ Rattana Leelawattana,⁹ Eun Jig Lee,¹⁰ Jung Hee Kim,¹¹ Andre Lacroix,¹² Audrey Laplanche,¹³ Paul O'Connell,¹³ Libuse Tauchmanova,¹³ Alberto M Pedroncelli¹³ and Beverly MK Biller¹⁴

International Congress of Endocrinology, Cape Town, Oral presentation on Dec 1st 2018

	All patients N=137
Median age, years (range)	40.0 (19.0–70.0)
Female, n (%)	106 (77.4)
Median time since diagnosis, months (range)	47.2 (2.1–286.7)
Any previous pituitary surgery, n (%)	120 (87.6)
Any previous treatments for Cushing's disease, n (%)	131 (95.6)
Any previous pituitary irradiation, n (%)	22 (16.1)
Baseline UFC	
Mean, x ULN	7.3
Median, x ULN	3.5

Summary: Cushing's Disease treatment

- Surgery is first-line treatment, but is associated with high recurrence rates and is not a viable option in some patients
- Repeat pituitary surgery, bilateral adrenalectomy and radiotherapy can result in control of hypercortisolism, but they are associated with variable response rates and significant risks
- Medical therapy plays an increasing role

Questions?

(CTUTE P

Cushing's disease: tumor directed medical therapy

Eliza B. Geer, M.D. CSRF conference October 4-6th, 2019

Memorial Sloan Kettering Cancer Center

Financial relationships

Commercial Interest(s)	Nature of Relationship
Novartis	Institution-directed research support for clinical trial participation
Strongbridge	Institution-directed research support for clinical trial participation; medical advisory board
Chiasma	Institution-directed research support for clinical trial participation
Ionis	Institution-directed research support for clinical trial participation
Bristol-Myers Squibb	Research grant for a phase II trial investigating ipilimumab and nivolumab in the treatment of aggressive pituitary tumors.

Drug targets for Cushing's disease

R Feelders J Clin Endocrinol Metab 98(2): 425-438, 2103

Memorial Sloan Kettering Cancer Center 13

筆

cabergoline for CD

Table 1 Review of	literature.					
Study	Design	n	Dose (mg/week)	Response criteria	Patients with controlled hypercortisolism (%)	Maximal duration of treatment
Pivonello (2004) (4)	Retrospective, multicenter, monotherapy	10	2.2 (1.0–3.0)	UFC	40	3 months
Pivonello (2009) (6)	Prospective, multicenter, monotherapy	20	3.5 (1.0–7.0)	UFC	35 (short term) 40 (long term)	2 years
Lila (2010) (17)	Prospective, multicenter, monotherapy	20	3.6 (1.0–5.0)	Midnight cortisol and/or LDDST	28	12 months
Godbout (2010) (7)	Retrospective, multicenter, monotherapy	30	2.1 (0.5–4.0)	UFC	37 (short term) 30 (long term)	3 years
Vilar (2010) (8)	Prospective, monocenter, bitherapy	12	2.5 (1.0–3.0)	UFC	25	6 months
Barbot (2014) (9)	Prospective, monocenter, bitherapy	14	2.3 (0.5–3.0)	UFC	33 (short term, monotherapy) 100 (long term, bitherapy)	12 months
Burman (2016) (10)	Prospective, monocenter, monotherapy	20	4.7 (2.5–5.0)	UFC	0	6 weeks

n, number of patients; UFC, urinary free cortisol; LDDST, low-dose dexamethasone suppression test.

Summary of cabergoline for CD

No clinical trials; only small, observational, mostly short term studies А Long term response to cabergoline 15. monotherapy in 18 complete responders 24 hr UFC control in 25-40% of patients treated > 1 treated \geq 1 year • months UFC (xULN) Treatment escape in 7 pts (39%) Modest response due to low doses used? (2 mg/wk range 0.5-6 mg) 2 • No clear predictive factors • Variable time to control, lag of 3 months in some 0 48 36 105 Time (months) Treatment escape/intolerance in 40%

Ferriere A Eur J Endo 2017

ORIGINAL ARTICLE

A 12-Month Phase 3 Study of Pasireotide in Cushing's Disease

Annamaria Colao, M.D., Ph.D., Stephan Petersenn, M.D., John Newell-Price, M.D., Ph.D., James W. Findling, M.D., Feng Gu, M.D., Mario Maldonado, M.D., Ulrike Schoenherr, Dipl.-Biol., David Mills, M.Sc., Luiz Roberto Salgado, M.D., and Beverly M.K. Biller, M.D., for the Pasireotide B2305 Study Group*

NEJM 2018 2012₁₆

Pasireotide treatment for Cushing's disease

Figure 1. Absolute Change in Urinary Free Cortisol Levels from Baseline to Month 6.

Urinary free cortisol was available at baseline and at month 6 in a total of 103 patients; 61 patients had a reduction of at least 50% in urinary free cortisol levels at month 6. The black dashed line represents the upper limit of the normal range (ULN) (145 nmol per 24 hours [52.5 μ g per 24 hours]).

Memorial Sloan Kettering Cancer Center

SC Pasireotide treatment for Cushing's disease

- Blood pressure, cholesterol, weight, and QoL improved
- Tumor volume decreased by 44% in 75 patients with a lesion in MRI in the 900 mcg group
- Safety profile:
 - Gastrointestinal side effects
 - 73% elevated glucose; 43% became prediabetic, 34% became diabetic
- Predictors? 50% response in mild Cushing's; 90% of nonresponders at 2 months did not normalize later

FDA approved for CD in December, 2012

N ENGLJ MED 366;10 NEJM.ORG MARCH 8, 2012

Efficacy and safety of once-monthly pasireotide in Cushing's disease: a 12 month clinical trial

André Lacroix, Feng Gu, Wilson Gallardo, Rosario Pivonello, Yerong Yu, Przemysław Witek, Marco Boscaro, Roberto Salvatori, Masanobu Yamada, Libuse Tauchmanova, Michael Roughton, Shoba Ravichandran, Stephan Petersenn, Beverly M K Biller, John Newell-Price, for the Pasireotide G2304 Study Group*

Lacriox, Lancet Endocrinology 2018

Long acting Pasireotide for CD: Phase III extension study

- Open label extension study, 81/150 pts from primary study
- Eligible if nl UFC or clinical benefit
- 53% nl UFC at last assessment
- 51.9% people discontinued; high glucose levels in 39.5%
- Improvements in BMI & WC maintained, QOL improved
- No new safety concerns

Fleseriu, Clinical Endocrinology 2019

Thank you

Cortisol Receptor Blockers

Adriana Ioachimescu, MD, PhD

- "to control hyperglycemia secondary to hypercortisolism in <u>adult</u> patients with endogenous <u>Cushing's syndrome</u> who have type 2 diabetes mellitus or glucose intolerance and have failed surgery or are not candidates for surgery."
- Contraindications: pregnancy (abortifacient)
- Oral administration, 300-1,200 mg/day

Mechanism: (b)locks the cortisol receptors

Adverse Events

- Excess cortisol activates other receptors
 - Mineralocorticoid effects
 - leg swelling, \downarrow potassium, sometimes $\uparrow blood$ pressure
- Mifepristone blocks other receptors
 - Progesterone
 - Vaginal bleeding, uterine endometrial thickening
- Manifestations of low cortisol
 - Treated with high dose dexamethasone (rescue medication)
- Nausea, fatigue, headaches, joint pain, dizziness

Mifepristone does not target the tumor and MRI surveillance is important

- Improves glucose control
- Improves BP in 38% of hypertensive patients
- Improves other manifestations of high cortisol
 - Body weight and composition
 - Waist circumference
 - Appearance
 - Strength
 - Moods
 - Quality of life

% Changes in body weight

- SEISMIC study
- 34% patients lost ≥ 10%
- 62% patients lost \geq 5%

Long-term Extension Study - 80% maintained the weight loss

Fein et al. BMC Endocrine Disorders (2015) 15:63

Dose titration

- Clinical evaluation
 - Feeling better? Tolerating the new medication?
 - Weight
 - Blood pressure
 - Home glucose records
- Are cortisol and ACTH levels helpful?
- What tests should be done?
 - Chemistry panel: potassium, creatinine, glucose
 - HbA1c
 - Thyroid tests
 - Lipids
 - EKG

- Potassium supplements (especially with increasing mifepristone dose)
 - Both low and high potassium levels can be dangerous
- Blood pressure medications
 - Diuretics that decrease aldosterone effects are helpful
 - The usual diuretics that work for high blood pressure (HCTZ) may be stopped
 - Blood pressure medications that can cause edema may be decreased or stopped
- Insulin and oral antidiabetic medications are usually reduced

Proactive attitude – seek immediate advice

- Acute illness
- Procedures under general anesthesia
- New medications started by other physicians
- Vaginal bleeding
- Significant weight loss
- Low potassium

Clinical trials with cortisol-receptor blockers

- A Study of the Efficacy and Safety of Relacorilant in Patients With Endogenous Cushing Syndrome (GRACE)
- This is a Phase 3, double-blind, placebo-controlled, randomized-withdrawal study to assess the safety and efficacy of relacorilant in patients with endogenous Cushing syndrome and concurrent 1) Type 2 diabetes mellitus/impaired glucose tolerance and/or 2) uncontrolled hypertension
- · Recorilant does not block the progesterone receptor
- <u>https://clinicaltrials.gov</u>

• Thank you!